New regimens in latent tuberculosis treatment

Judith Bruchfeld
Senior consultant, Associate professor
Dept of Infectious Diseases
Karolinska University Hospital and
Division of Infectious Diseases, Department of Medicine Solna,
Karolinska Institutet
Natural history of TB infection

- **Exposure**
- **Infection**
- **Dendritic Cell (innate response)**
- **T Cell (adaptive response)**
- **Initial immune control of bacteria**
- **Granuloma**
- **Latent TB**
- **Elimination of bacteria**
- **Lifelong containment**
- **Reactivation**
- **Macrophage**
- **Onward transmission**
- **Active TB**
- **Inability to control bacteria**
- **Active TB**
Prioritized groups for screening and treatment WHO 2018 (2020)

Strong recommendation

- Adults, adolescents and children living with HIV
- HIV negative adult and child household contacts (high and low endemic settings)
- Individuals prior to or ongoing immunosuppression (anti-TNF, dialysis, transplant candidates and silicosis)

Conditional recommendation

- Migrants from high endemic areas.
- Prisoners
- Health care workers
- Homeless people
- IV drug users
Prioritized groups for screening and treatment
Stockholm county 2019

According to WHO (strong recommendation) and:

• Migrants from TB high endemic countries (>100/100 000)

• Pregnant women from high endemic countries or known TB contact

• Individuals with hematologic malignancies

• Individuals planned for high dose steroids (>15 mg prednisone/day > 1 month)
INH protective efficacy by duration of treatment

Figure 83. Impact of duration of intake of isoniazid preventive therapy on protective efficacy.\(^{123}\)

Rieder HL. Interventions for TB control and elimination. Int Union against TB and Lung Dis. 2002
INH treatment – optimal duration?

• Immunocompetent adults: 6 months of preventive treatment does not give optimal protection;

• More than 12 months of preventive treatment is not necessary;

• 9–10 months appears to be the optimal duration;

• Total duration of preventive treatment may be more important than its continuity.

Treatment efficacy

Meta-analysis: Randomized, controlled trials that evaluated LTBI treatment in humans and recorded at least 1 of 2 pre-specified end points (preventing active TB or hepatotoxicity).

Purpose: To evaluate the comparative efficacy and harms of LTBI treatment regimens aimed at preventing active TB among adults and children.

INH vs rifamycins alone or in combinations

- **INH+RIF 3m vs INH 6m:**
 - Adherence was similar and no difference was detected for treatment-limiting adverse events or hepatotoxicity.

- **INH/Rifapentine once weekly for 12 weeks vs INH 9m:**
 - INH/Rifapentine non-inferior to INH 9m for the incidence of active TB (0.2% vs 0.4%, RR 0.44, CI95% 0.18-1.07).
 - INH/Rifapentine less hepatotoxicity (0.4% vs 2.4%; RR 0.16, CI95% 0.10-0.27) but treatment-limiting adverse events more frequent (4.9% vs 3.7%; RR 1.32, CI95%1.07-1.64)

INH vs rifamycins alone or in combinations

- 3443 adults randomised
 Efficacy: 4 RIF non-inferior to 9 H

- Better safety (all AEs)
 2.8 vs 5.8% (Risk difference -3.0 (-4.1 vs -2.0))

- Higher treatment completion rate
 78.7 % vs 62% (Risk difference 15.6% (13.4%-17.8%))

- Similar results seen in children

 doi
INH/RPT 12 weeks (3HP)

- 3HP has proven as effective as 9H, but with a higher completion rate (82.1% vs 69.0%, p<0.001)

- Review including 2 studies comparing 3HP to INH 6 or 9 months among HIV+ adults, 1 in HIV-negative adults and 1 in HIV-negative children and adolescents.

- Risk of active TB was not significantly different between 3HP and 6/9H in adults with HIV (risk ratio [RR] 0.73, 95%CI 0.23–2.29) in adults without HIV (RR 0.44, 95%CI 0.18–1.07) in children and adolescents (RR 0.13, 95%CI 0.01–2.54)
INH/RPT 12 weeks (3HP)

- Risk of hepatotoxicity was significantly lower in the 3HP group among
 - adults with HIV (RR 0.26, 95%CI 0.12–0.55)
 - adults without HIV (RR 0.16, 95%CI 0.10–0.27).

- 3HP was also associated with a higher completion rate in all subgroups.

Hamada Y et al. 2018. Three-month weekly rifapentine plus isoniazid for tuberculosis preventive treatment: a systematic review Int J Tuberc Lung dis 22(12);1422-1428, 2018
INH/Rifapentine 1 month

• Randomized, open-label, phase 3 non-inferiority trial comparing efficacy and safety of 1-month daily HP vs 9H alone in 3000 HIV-infected adults living in areas of high TB prevalence or who had evidence of LTBI.

• Primary end points: first diagnosis of TB, death from TB or unknown cause. Follow-up 3.3 years

• Median CD4+ count 470 cells per cubic millimeter, half the patients were receiving ART.

Swindells S et al. 2019. One Month of Rifapentine plus Isoniazid to Prevent HIV-Related Tuberculosis NEJM
INH/Rifapentine 1 month

- Primary end point reported in 32 of 1488 patients (2%) in 1 HP and in 33 of 1498 (2%) in the 9H. Non-inferiority achieved.

- Serious adverse events: 6% of the patients in 1 HP and in 7% of those in 9H (P = 0.07).

- The percentage of treatment completion was significantly higher in 1HP than in 9H (97% vs. 90%, P<0.001).

Swindells S et al. 2019. One Month of Rifapentine plus Isoniazid to Prevent HIV-Related Tuberculosis NEJM
Recommended drug regimens (WHO 2018/update 2020)

High endemic

- INH 6 (9) months
- RIF/INH 3 months < 15 years old
- RPT/INH once/week 12 weeks

Low endemic

- INH 6 (9) months
- RIF/INH 3 months
- RIF 4 months
- RPT/INH once/week 12 weeks
Choice of treatment TB centre Karolinska 2019

- RIF 4m or INH/RPT once weekly/12 weeks
 - Contacts (if sensitive resistance pattern of index patient known)
 - Migrants
 - Post-partum (not INH/RPT)

- INH 9m
 - When increased risk of developing RIF resistance
 - Immunosuppressive treatment (increased risk of asymptomatic active M.tb)
 - Pulmonary chest x-ray indicating previous TB
Risk of INH or RIF drug resistance development

- INH 6-12 months: No difference in the risk of resistance among incident TB cases (risk ratio 1.45 CI95% 0.85-2.47). HIV-infected and HIV-uninfected populations were comparable.

Risk of RIF resistance

- No difference in risk of resistance among incident TB cases (0.1% vs 0.09%, risk ratio 1.12 CI 95% 0.41-3.08).

- No statistically significant increased risk of rifamycin resistance after LTBI treatment with rifamycin-containing regimens compared to non-rifamycin-containing regimens (RR 3.45, CI 95% 0.72-16.56; P = 0.12) or placebo (RR 0.20, CI 95% 0.02-1.66; P = 0.13).

Contraindications

Absolute
- Suspected/confirmed active TB
- Non-compensated liver failure

Relative
- Liver disease
- Age >35yrs
- Alcohol or other drug abuse
- Expected non-adherence
- Exposure to MDR-TB
- Frequent travels and/or migration to high endemic area
- Rifapentine: Pregnancy or breastfeeding
<table>
<thead>
<tr>
<th>Drug regimen</th>
<th>Formula</th>
<th>Dose per body weight</th>
<th>Comment</th>
</tr>
</thead>
</table>
| **Isoniazid** OD 9 months | Tabl Tibinide 300mg
Oral solution (ex tempore)
Isoniazid 10mg/ml or 20mg/ml | Adults = 5 mg/kg
Children = 10 mg/kg
Max 300 mg (>50kg) | Intake on empty stomach.
Combine with Pyridoxine (vit B6)
Kidney failure: GFR<10ml/min or HD reduce INH to 200mg |
| **Rifampicin** OD 4 months | Caps Rimactan 150, 450, 600mg
Oral solution Rifadin 20mg/ml | Adults/children = 10 mg/kg
Max 600 mg (>50kg) | Obs! Do not miss active TB
Intake on empty stomach.
Kidney failure: GFR<10ml/min or HD reduce RIF to 450mg |
| **Isoniazid + Rifampicin** OD 3 months | See above | As above | Intake on empty stomach |
| **Isoniazid + Rifapentine** once weekly for 12 weeks | Tabl Tibinide 300mg
Tabl Priftin 150mg | Adults/children
Isoniazid = 15 mg/kg
Max 900 mg
Rifapentine
10.0–14.0 kg = 300 mg
14.1–25.0 kg = 450 mg
25.1–32.0 kg = 600 mg
32.1–49.9 kg = 750 mg
≥50.0 kg = 900 mg
Max 900 mg | Rifapentine as effective as Rifampicin but with 5 times longer half-life
Intake with food. DOT |
<table>
<thead>
<tr>
<th>Drug</th>
<th>Common (>1/100)</th>
<th>Uncommon (<1/100)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>Peripheral neuropathy (4-17%)</td>
<td>Depression, psychosis. Convulsions. Hepatitis.</td>
<td>Always combine with Pyridoxine (vit B6) 40mg OD (max 240mg OD)</td>
</tr>
<tr>
<td></td>
<td>Fatigue, headache, joint ache, vertigo, nausea, dyspepsia, rash. Elevated liver enzymes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifapentine</td>
<td>Specific for RPT: Fluelike symptoms (ca 3%)</td>
<td>Specific for RPT: Hypotension/syncope (0,1%)</td>
<td></td>
</tr>
</tbody>
</table>
Ongoing trials to further shorten TB preventive Treatment (TPT)

2R2 trial (Dick Menzies PI)

Aim
- to determine if RIF at double or triple the standard dose for 2 months is as safe and effective as 4R

Design
- 1:1:1 randomised
- Phase 2 b, partially blinded, controlled trial
- The two higher doses (intervention arms) will be administered double blind: participants and providers will be blinded to dose (i.e. 20 or 30 mg/kg/day)
Ongoing trials to shorten TB preventive Treatment (TPT)

Asteroid trial (Tim Sterling)

Aim
- To compare the safety and effectiveness of daily RPT 6 weeks with 12-16 weeks of rifamycin-based treatment. RIF

Design
- RCT
- 1:1 randomisation
The future: Microshort regimens?

Activity of a Long-Acting Injectable Bedaquiline Formulation in a Paucibacillary Mouse Model of Latent Tuberculosis Infection.

- Effect of one injection of the long acting BDQ intramuscular lasted 12 weeks, comparable to oral BDQ, RTP/INH and RIF regimens

- TPT with one or two injections of long acting drugs could be transformative.

- Possible problems with AEs, long halftime. Start with oral BDQ to evaluate AEs before longlasting injection suggested.
LTBI treatment after MDR exposure

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Estimated efficacy (%)</th>
<th>Estimated stop due to AE (%)</th>
<th>Estimated completion rate (%)</th>
<th>Estimated TB cases prevented (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No tx</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>PZA/FQ</td>
<td>90</td>
<td>66</td>
<td>31</td>
<td>134</td>
</tr>
<tr>
<td>PZA/EMB</td>
<td>62</td>
<td>25</td>
<td>75</td>
<td>223</td>
</tr>
<tr>
<td>FQ</td>
<td>62</td>
<td>8</td>
<td>81</td>
<td>241</td>
</tr>
<tr>
<td>FQ/EM</td>
<td>76</td>
<td>1</td>
<td>100</td>
<td>288</td>
</tr>
</tbody>
</table>

FQ 6m preventive therapy to household contacts to MDR-TB resulted in:
- substantial health system savings
- reduced mortality
- reduced incidence of MDR-TB
- reduced incidence of acquired FQ-resistant disease
- improved quality of life
- substantial health system savings.

Thank you!